[A] $5$.
[B] $4$.
[C] $3$.
[D] $2$.
Solução
Calculando $d(x)$: $$d(x)=y-y^{2}$$ Calculando $D(x)$: $$D(x)=y^{2}+y^{2}+y^{2}-(y^{3}+y^{2}+y)$$ $$D(x)=y^{2}+y^{2}+y^{2}-y^{3}-y^{2}-y)$$ $$D(x)=2y^{2}-y^{3}-y$$ Calculando $d(x)+D(x)$: $$d(x)+D(x)=0$$ $$(y-y^{2})+(2y^{2}-y^{3}-y)=0$$ $$y-y^{2}+2y^{2}-y^{3}-y=0$$ $$y^{2}-y^{3}=0$$ Substituindo $y$ por $\textrm{sen }$: $$y^{2}-y^{3}=0$$ $$\textrm{sen}^{2} \, x-\textrm{sen}^{3}\,x=0$$ $$\textrm{sen }x(\textrm{sen }x-\textrm{sen}^{2} \, x)=0$$ $$\textrm{sen }x_{1}=0$$ Ou $$\textrm{sen }x-\textrm{sen}^{2} \, x=0$$ $$\textrm{sen }x=\textrm{sen}^{2} \, x \, (\div \textrm{sen } x)$$ $$\textrm{sen }x_{2}=1$$ Os valores possíveis para $\textrm{sen }x$ são $1$ e $0$, os ângulos que tem seno igual a esses valores são $0^{\circ} (\textrm{sen}=0)$, $90^{\circ} (\textrm{sen}=1)$, $180^{\circ} (\textrm{sen}=0)$ e $360^{\circ} (\textrm{sen}=0)$. Logo, $n=4$.
Resposta: Item B